

OpenSCM-Units

OpenSCM-Units is a repository for handling of units related to simple climate modelling.

OpenSCM-Units is free software under a BSD 3-Clause License, see
LICENSE [https://github.com/openscm/openscm-units/blob/master/LICENSE].

Documentation

	Installation

	Usage
	Introduction

	Custom conversions

	Development
	Contributing

	Getting setup

	Formatting

	Buiding the docs

	Releasing

	Why is there a Makefile in a pure Python repository?

API reference

	Unit Registry API
	ScmUnitRegistry

	unit_registry

	Data API
	Mixtures API

Versions

	Changelog
	v0.5.1

	v0.5.0

	v0.4.0

	v0.3.0

	v0.2.0

	v0.1.4

	v0.1.3

	v0.1.2

	v0.1.1

	v0.1.0

Index

	Index

	Module Index

	Search Page

Installation

OpenSCM-Runner can be installed with pip

pip install openscm-units

If you also want to run the example notebooks install additional
dependencies using

pip install openscm-units[notebooks]

OpenSCM-Units can also be installed with conda

conda install -c conda-forge openscm-units

Usage

How to use openscm_units is explained in jupyter notebooks.
You can either view static versions of them below, or download and execute them as
interactive jupyter notebooks [https://github.com/openscm/openscm-units/tree/master/docs/source/notebooks].

	Introduction
	The unit registry

	Basics

	Contexts

	Gas mixtures

	Building up complexity

	Custom conversions
	Custom conversions DataFrame

Introduction

Here we give a brief introduction to openscm_units.

The unit registry

openscm_units.unit_registry extends Pint’s default unit registry by adding simple climate modelling related units. We’ll spare the details here (they can be found in our documentation [https://openscm-units.readthedocs.io/en/latest/unit_registry.html]), but the short idea is that you can now do all sorts of simple climate modelling related conversions which were previously impossible.

[1]:

NBVAL_IGNORE_OUTPUT
import traceback

import pandas as pd
import seaborn as sns
from pint.errors import DimensionalityError

from openscm_units import unit_registry

Basics

openscm_units.unit_registry knows about basic units, e.g. ‘CO2’.

[2]:

unit_registry("CO2")

[2]:

1 CO2

Standard conversions are now trivial.

[3]:

unit_registry("CO2").to("C")

[3]:

0.2727272727272727 C

[4]:

emissions_aus = 0.34 * unit_registry("Gt C / yr")
emissions_aus.to("Mt CO2/yr")

[4]:

1246.666666666667 CO2 megametric_ton/a

Contexts

In general, we cannot simply convert e.g. CO\(_2\) emissions into CH\(_4\) emissions.

[5]:

try:
 unit_registry("CH4").to("CO2")
except DimensionalityError:
 traceback.print_exc(limit=0, chain=False)

pint.errors.DimensionalityError: Cannot convert from 'CH4' ([methane]) to 'CO2' ([carbon])

However, a number of metrics exist which do allow conversions between GHG species. Pint plus OpenSCM’s inbuilt metric conversions allow you to perform such conversions trivially by specifying the context keyword.

[6]:

with unit_registry.context("AR4GWP100"):
 ch4_ar4gwp100_co2e = unit_registry("CH4").to("CO2")

ch4_ar4gwp100_co2e

[6]:

25.0 CO2

Gas mixtures

Some gases (mainly, refrigerants) are actually mixtures of other gases, for example HFC407a (aka R-407A). In general, they can be used like any other gas. Additionally, openscm_units provides the ability to split these gases into their constituents.

[7]:

emissions = 20 * unit_registry('kt HFC407a / year')

with unit_registry.context("AR4GWP100"):
 print(emissions.to('Gg CO2 / year'))

42140.0 CO2 * gigagram / year

[8]:

unit_registry.split_gas_mixture(emissions)

[8]:

[4.0 <Unit('HFC32 * kt / year')>,
 8.0 <Unit('HFC125 * kt / year')>,
 8.0 <Unit('HFC134a * kt / year')>]

Building up complexity

openscm_units is meant to be a simple repository which does one thing, but does it well. We encourage you to use it wherever you like (and if you do please let us know via the issue tracker [https://github.com/openscm/openscm-units/issues]). As an example of something we can do, we can quickly see how GWP100 has changed between assessment reports.

[9]:

NBVAL_IGNORE_OUTPUT
units_of_interest = ["CO2", "CH4", "N2O", "HFC32", "CFC11"]
metrics_of_interest = ["SARGWP100", "AR4GWP100", "AR5GWP100"]
data = {
 "unit": [],
 "metric": [],
 "value": [],
}
for metric in metrics_of_interest:
 with unit_registry.context(metric):
 for unit in units_of_interest:
 data["unit"].append(unit)
 data["metric"].append(metric)
 data["value"].append(unit_registry(unit).to("CO2").magnitude)

data = pd.DataFrame(data)

sns.catplot(
 data=data,
 x="metric",
 y="value",
 kind="bar",
 col="unit",
 col_wrap=5,
 sharey=False,
)

[9]:

<seaborn.axisgrid.FacetGrid at 0x7f74422ca070>

[image: ../_images/notebooks_introduction_16_1.png]

Custom conversions

Here we show how custom conversions can be passed to OpenSCM-Units’ ScmUnitRegistry.

[1]:

NBVAL_IGNORE_OUTPUT
import traceback

import pandas as pd

from openscm_units import ScmUnitRegistry

Custom conversions DataFrame

On initialisation, a pd.DataFrame can be provided which contains the custom conversions. This pd.DataFrame should be formatted as shown below, with an index that contains the different species and columns which contain the conversion for different metrics.

[2]:

metric_conversions_custom = pd.DataFrame([
 {
 "Species": "CH4",
 "Custom1": 20,
 "Custom2": 25,
 },
 {
 "Species": "N2O",
 "Custom1": 341,
 "Custom2": 300,
 },
]).set_index("Species")
metric_conversions_custom

[2]:

 Development

Development

If you’re interested in contributing to OpenSCM-Units, we’d love to have you on board!
This section of the docs will (once we’ve written it) detail how to get setup to contribute and how best to communicate.

	Contributing

	Getting setup

	Getting help

	Development tools

	Other tools

	Formatting

	Buiding the docs

	Gotchas

	Docstring style

	Releasing

	First step

	PyPI

	Push to repository

	Why is there a Makefile in a pure Python repository?

Contributing

All contributions are welcome, some possible suggestions include:

	tutorials (or support questions which, once solved, result in a new tutorial :D)

	blog posts

	improving the documentation

	bug reports

	feature requests

	pull requests

Please report issues or discuss feature requests in the OpenSCM-Units issue tracker [https://github.com/znicholls/openscm-units/issues].
If your issue is a feature request or a bug, please use the templates available, otherwise, simply open a normal issue :)

As a contributor, please follow a couple of conventions:

	Create issues in the OpenSCM-Units issue tracker [https://github.com/znicholls/openscm-units/issues] for changes and enhancements, this ensures that everyone in the community has a chance to comment

	Be welcoming to newcomers and encourage diverse new contributors from all backgrounds: see the Python Community Code of Conduct [https://www.python.org/psf/codeofconduct/]

	Only push to your own branches, this allows people to force push to their own branches as they need without fear or causing others headaches

	Start all pull requests as draft pull requests and only mark them as ready for review once they’ve been rebased onto master, this makes it much simpler for reviewers

	Try and make lots of small pull requests, this makes it easier for reviewers and faster for everyone as review time grows exponentially with the number of lines in a pull request

Getting setup

To get setup as a developer, we recommend the following steps (if any of these tools are unfamiliar, please see the resources we recommend in Development tools):

	Install conda and make

	Run make virtual-environment, if that fails you can try doing it manually

	Change your current directory to OpenSCM-Units’s root directory (i.e. the one which contains README.rst), cd openscm-units

	Create a virtual environment to use with OpenSCM-Units python3 -m venv venv

	Activate your virtual environment source ./venv/bin/activate

	Upgrade pip pip intall --upgrade pip

	Install the development dependencies (very important, make sure your virtual environment is active before doing this) pip install -e .[dev]

	Make sure the tests pass by running make test-all, if that fails the commands are

	Activate your virtual environment source ./venv/bin/activate

	Run the unit and integration tests pytest --cov -r a --cov-report term-missing

	Test the notebooks pytest -r a --nbval ./notebooks --sanitize ./notebooks/tests_sanitize.cfg

Getting help

Whilst developing, unexpected things can go wrong (that’s why it’s called ‘developing’, if we knew what we were doing, it would already be ‘developed’).
Normally, the fastest way to solve an issue is to contact us via the issue tracker [https://github.com/znicholls/openscm-units/issues].
The other option is to debug yourself.
For this purpose, we provide a list of the tools we use during our development as starting points for your search to find what has gone wrong.

Development tools

This list of development tools is what we rely on to develop OpenSCM-Units reliably and reproducibly.
It gives you a few starting points in case things do go inexplicably wrong and you want to work out why.
We include links with each of these tools to starting points that we think are useful, in case you want to learn more.

	Git [http://swcarpentry.github.io/git-novice/]

	Make [https://swcarpentry.github.io/make-novice/]

	Conda virtual environments [https://medium.freecodecamp.org/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c]

	Pip and pip virtual environments [https://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/]

	Tests [https://semaphoreci.com/community/tutorials/testing-python-applications-with-pytest]

	we use a blend of pytest [https://docs.pytest.org/en/latest/] and the inbuilt Python testing capabilities for our tests so checkout what we’ve already done in tests to get a feel for how it works

	Continuous integration (CI) [https://help.github.com/en/actions] (also brief intro blog post [https://gabrieltanner.org/blog/an-introduction-to-github-actions] and a longer read [https://dev.to/bnb/an-unintentionally-comprehensive-introduction-to-github-actions-ci-blm])

	we use GitHub CI for our CI but there are a number of good providers

	Jupyter Notebooks [https://medium.com/codingthesmartway-com-blog/getting-started-with-jupyter-notebook-for-python-4e7082bd5d46]

	Jupyter is automatically included in your virtual environment if you follow our Getting setup instructions

	Sphinx [http://www.sphinx-doc.org/en/master/]

Other tools

We also use some other tools which aren’t necessarily the most familiar.
Here we provide a list of these along with useful resources.

	Regular expressions [https://www.oreilly.com/ideas/an-introduction-to-regular-expressions]

	we use regex101.com to help us write and check our regular expressions, make sure the language is set to Python to make your life easy!

Formatting

To help us focus on what the code does, not how it looks, we use a couple of automatic formatting tools.
These automatically format the code for us and tell use where the errors are.
To use them, after setting yourself up (see Getting setup), simply run make format (and make format-notebooks to format notebook code).
Note that make format can only be run if you have committed all your work i.e. your working directory is ‘clean’.
This restriction is made to ensure that you don’t format code without being able to undo it, just in case something goes wrong.

Buiding the docs

After setting yourself up (see Getting setup), building the docs is as simple as running make docs (note, run make -B docs to force the docs to rebuild and ignore make when it says ‘… index.html is up to date’).
This will build the docs for you.
You can preview them by opening docs/build/html/index.html in a browser.

For documentation we use Sphinx [http://www.sphinx-doc.org/en/master/].
To get ourselves started with Sphinx, we started with this example [https://pythonhosted.org/an_example_pypi_project/sphinx.html] then used Sphinx’s getting started guide [http://www.sphinx-doc.org/en/master/usage/quickstart.html].

Gotchas

To get Sphinx to generate pdfs (rarely worth the hassle), you require Latexmk [https://mg.readthedocs.io/latexmk.html].
On a Mac this can be installed with sudo tlmgr install latexmk.
You will most likely also need to install some other packages (if you don’t have the full distribution).
You can check which package contains any missing files with tlmgr search --global --file [filename].
You can then install the packages with sudo tlmgr install [package].

Docstring style

For our docstrings we use numpy style docstrings.
For more information on these, here is the full guide [https://numpydoc.readthedocs.io/en/latest/format.html] and the quick reference we also use [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html].

Releasing

First step

	Test installation with dependencies make test-install

	Update CHANGELOG.rst

	add a header for the new version between master and the latest bullet point

	this should leave the section underneath the master header empty

	git add .

	git commit -m "Prepare for release of vX.Y.Z"

	git tag vX.Y.Z

	Test version updated as intended with make test-install

PyPI

If uploading to PyPI, do the following (otherwise skip these steps)

	make publish-on-testpypi

	Go to test PyPI [https://test.pypi.org/project/openscm-units/] and check that the new release is as intended. If it isn’t, stop and debug.

	Test the install with make test-testpypi-install (this doesn’t test all the imports as most required packages are not on test PyPI).

Assuming test PyPI worked, now upload to the main repository

	make publish-on-pypi

	Go to OpenSCM-Units’s PyPI [https://pypi.org/project/openscm-units/] and check that the new release is as intended.

	Test the install with make test-pypi-install

Push to repository

Finally, push the tags and the repository state

	git push

	git push --tags

Why is there a Makefile in a pure Python repository?

Whilst it may not be standard practice, a Makefile is a simple way to automate general setup (environment setup in particular).
Hence we have one here which basically acts as a notes file for how to do all those little jobs which we often forget e.g. setting up environments, running tests (and making sure we’re in the right environment), building docs, setting up auxillary bits and pieces.

 Unit Registry API

Unit Registry API

Unit handling makes use of the Pint [https://github.com/hgrecco/pint] library. This
allows us to easily define units as well as contexts. Contexts allow us to perform
conversions which would not normally be allowed e.g. in the ‘AR4GWP100’
context we can convert from CO2 to CH4 using the AR4GWP100 equivalence metric.

An illustration of how the unit_registry can be used is shown below:

>>> from openscm_units import unit_registry
>>> unit_registry("CO2")
<Quantity(1, 'CO2')>

>>> emissions_aus = 0.34 * unit_registry("Gt C / yr")
>>> emissions_aus
<Quantity(0.34, 'C * gigametric_ton / a')>

>>> emissions_aus.to("Mt CO2 / yr")
<Quantity(1246.666666666667, 'CO2 * megametric_ton / a')>

>>> with unit_registry.context("AR4GWP100"):
... (100 * unit_registry("Mt CH4 / yr")).to("Mt CO2 / yr")
<Quantity(2500.0, 'CO2 * megametric_ton / a')>

More details on emissions units

Emissions are a flux composed of three parts: mass, the species being emitted and the
time period e.g. “t CO2 / yr”. As mass and time are part of SI units, all we need to
define here are emissions units i.e. the stuff. Here we include as many of the canonical
emissions units, and their conversions, as possible.

For emissions units, there are a few cases to be considered:

	fairly obvious ones e.g. carbon dioxide emissions can be provided in ‘C’ or ‘CO2’ and
converting between the two is possible

	less obvious ones e.g. NOx emissions can be provided in ‘N’ or ‘NOx’, we provide
conversions between these two which can be enabled if needed (see below).

	case-sensitivity. In order to provide a simplified interface, using all uppercase
versions of any unit is also valid e.g. unit_registry("HFC4310mee") is the same as
unit_registry("HFC4310MEE")

	hyphens and underscores in units. In order to be Pint compatible and to simplify
things, we strip all hyphens and underscores from units.

As a convenience, we allow users to combine the mass and the type of emissions to make a
‘joint unit’ e.g. “tCO2”. It should be recognised that this joint unit is a derived
unit and not a base unit.

By defining these three separate components, it is much easier to track what conversions
are valid and which are not. For example, as the emissions units are all defined as
emissions units, and not as atomic masses, we are able to prevent invalid conversions.
If emissions units were simply atomic masses, it would be possible to convert between
e.g. C and N2O which would be a problem. Conventions such as allowing carbon dioxide
emissions to be reported in C or CO2, despite the fact that they are fundamentally
different chemical species, is a convention which is particular to emissions (as far as
we can tell).

Pint’s contexts are particularly useful for emissions as they facilitate
metric conversions. With a context, a conversion which wouldn’t normally be allowed
(e.g. tCO2 –> tN2O) is allowed and will use whatever metric conversion is appropriate
for that context (e.g. AR4GWP100).

Finally, we discuss namespace collisions.

CH4

Methane emissions are defined as ‘CH4’. In order to prevent inadvertent conversions of
‘CH4’ to e.g. ‘CO2’ via ‘C’, the conversion ‘CH4’ <–> ‘C’ is by default forbidden.
However, it can be performed within the context ‘CH4_conversions’ as shown below:

>>> from openscm_units import unit_registry
>>> unit_registry("CH4").to("C")
pint.errors.DimensionalityError: Cannot convert from 'CH4' ([methane]) to 'C' ([carbon])

with a context, the conversion becomes legal again
>>> with unit_registry.context("CH4_conversions"):
... unit_registry("CH4").to("C")
<Quantity(0.75, 'C')>

as an unavoidable side effect, this also becomes possible
>>> with unit_registry.context("CH4_conversions"):
... unit_registry("CH4").to("CO2")
<Quantity(2.75, 'CO2')>

N2O

Nitrous oxide emissions are typically reported with units of ‘N2O’. However,
they are also reported with units of ‘N2ON’ (a short-hand which indicates that
only the mass of the nitrogen is being counted). Reporting nitrous oxide
emissions with units of simply ‘N’ is ambiguous (do you mean the mass of
nitrogen, so 1 N = 28 / 44 N2O or just the mass of a single N atom, so
1 N = 14 / 44 N2O). By default, converting ‘N2O’ <–> ‘N’ is forbidden to
prevent this ambiguity. However, the conversion can be performed within the
context ‘N2O_conversions’, in which case it is assumed that ‘N’ just means a
single N atom i.e. 1 N = 14 / 44 N2O, as shown below:

>>> from openscm_units import unit_registry
>>> unit_registry("N2O").to("N")
pint.errors.DimensionalityError: Cannot convert from 'N2O' ([nitrous_oxide]) to 'N' ([nitrogen])

with a context, the conversion becomes legal again
>>> with unit_registry.context("N2O_conversions"):
... unit_registry("N2O").to("N")
<Quantity(0.318181818, 'N')>

NOx

Like for methane, NOx emissions also suffer from a namespace collision. In order to
prevent inadvertent conversions from ‘NOx’ to e.g. ‘N2O’, the conversion ‘NOx’ <–>
‘N’ is by default forbidden. It can be performed within the ‘NOx_conversions’ context:

>>> from openscm_units import unit_registry
>>> unit_registry("NOx").to("N")
pint.errors.DimensionalityError: Cannot convert from 'NOx' ([NOx]) to 'N' ([nitrogen])

with a context, the conversion becomes legal again
>>> with unit_registry.context("NOx_conversions"):
... unit_registry("NOx").to("N")
<Quantity(0.30434782608695654, 'N')>

NH3

In order to prevent inadvertent conversions from ‘NH3’ to ‘CO2’, the conversion
‘NH3’ <–> ‘N’ is by default forbidden. It can be performed within the ‘NH3_conversions’
context analogous to the ‘NOx_conversions’ context:

>>> from openscm_units import unit_registry
>>> unit_registry("NH3").to("N")
pint.errors.DimensionalityError: Cannot convert from 'NH3' ([NH3]) to 'N' ([nitrogen])

with a context, the conversion becomes legal again
>>> with unit_registry.context("NH3_conversions"):
... unit_registry("NH3").to("N")
<Quantity(0.823529412, 'N')>

	
class openscm_units._unit_registry.ScmUnitRegistry(*args, **kwargs)

	Bases: UnitRegistry

Unit registry class.

Provides some convenience methods to add standard units and contexts.

	
UnitsContainer(*args, **kwargs) → UnitsContainerT

	

	
add_context(context: Context) → None [https://docs.python.org/3/library/constants.html#None]

	Add a context object to the registry.

The context will be accessible by its name and aliases.

Notice that this method will NOT enable the context;
see enable_contexts().

	
add_standards()

	Add standard units.

Has to be done separately because of pint’s weird initializing.

	
auto_reduce_dimensions

	Determines if dimensionality should be reduced on appropriate operations.

	
case_sensitive

	Default unit case sensitivity

	
check(*args: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], UnitsContainer, Unit]]) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[F], F]

	Decorator to for quantity type checking for function inputs.

Use it to ensure that the decorated function input parameters match
the expected dimension of pint quantity.

	The wrapper function raises:
	
	pint.DimensionalityError if an argument doesn’t match the required dimensions.

	uregUnitRegistry
	a UnitRegistry instance.

	argsstr or UnitContainer or None
	Dimensions of each of the input arguments.
Use None to skip argument conversion.

	Returns:

	the wrapped function.

	Return type:

	callable

	Raises:

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If the number of given dimensions does not match the number of function
 parameters.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the any of the provided dimensions cannot be parsed as a dimension.

	
context(*names, **kwargs) → AbstractContextManager[Context]

	Used as a context manager, this function enables to activate a context
which is removed after usage.

	Parameters:

	
	*names – name(s) of the context(s).

	**kwargs – keyword arguments for the contexts.

Examples

Context can be called by their name:

>>> import pint
>>> ureg = pint.UnitRegistry()
>>> ureg.add_context(pint.Context('one'))
>>> ureg.add_context(pint.Context('two'))
>>> with ureg.context('one'):
... pass

If a context has an argument, you can specify its value as a keyword argument:

>>> with ureg.context('one', n=1):
... pass

Multiple contexts can be entered in single call:

>>> with ureg.context('one', 'two', n=1):
... pass

Or nested allowing you to give different values to the same keyword argument:

>>> with ureg.context('one', n=1):
... with ureg.context('two', n=2):
... pass

A nested context inherits the defaults from the containing context:

>>> with ureg.context('one', n=1):
... # Here n takes the value of the outer context
... with ureg.context('two'):
... pass

	
convert(value: T, src: Union [https://docs.python.org/3/library/typing.html#typing.Union][Quantity, str [https://docs.python.org/3/library/stdtypes.html#str], UnitsContainer, Unit], dst: Union [https://docs.python.org/3/library/typing.html#typing.Union][Quantity, str [https://docs.python.org/3/library/stdtypes.html#str], UnitsContainer, Unit], inplace: bool [https://docs.python.org/3/library/functions.html#bool] = False) → T

	Convert value from some source to destination units.

	Parameters:

	
	value – value

	src (pint.Quantity or str [https://docs.python.org/3/library/stdtypes.html#str]) – source units.

	dst (pint.Quantity or str [https://docs.python.org/3/library/stdtypes.html#str]) – destination units.

	inplace – (Default value = False)

	Returns:

	converted value

	Return type:

	type [https://docs.python.org/3/library/functions.html#type]

	
default_as_delta

	When performing a multiplication of units, interpret
non-multiplicative units as their delta counterparts.

	
property default_format: str [https://docs.python.org/3/library/stdtypes.html#str]

	Default formatting string for quantities.

	
property default_system: System

	

	
define(definition: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Definition]) → None [https://docs.python.org/3/library/constants.html#None]

	Add unit to the registry.

	Parameters:

	definition (str [https://docs.python.org/3/library/stdtypes.html#str] or Definition) – a dimension, unit or prefix definition.

	
disable_contexts(n: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None) → None [https://docs.python.org/3/library/constants.html#None]

	Disable the last n enabled contexts.

	Parameters:

	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of contexts to disable. Default: disable all contexts.

	
enable_contexts(*names_or_contexts, **kwargs)

	Overload pint’s enable_contexts() to add contexts once (the first time
they are used) to avoid (unnecessary) operations.

	
fmt_locale: Optional[Locale] = None

	Babel.Locale instance or None

	
get_base_units(input_units: Union[UnitLike, Quantity], check_nonmult: bool [https://docs.python.org/3/library/functions.html#bool] = True, system: Union[str [https://docs.python.org/3/library/stdtypes.html#str], System, None [https://docs.python.org/3/library/constants.html#None]] = None) → Tuple[Number, Unit]

	Convert unit or dict of units to the base units.

If any unit is non multiplicative and check_converter is True,
then None is returned as the multiplicative factor.

Unlike BaseRegistry, in this registry root_units might be different
from base_units

	Parameters:

	
	input_units (UnitsContainer or str [https://docs.python.org/3/library/stdtypes.html#str]) – units

	check_nonmult (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, None will be returned as the
multiplicative factor if a non-multiplicative
units is found in the final Units. (Default value = True)

	system – (Default value = None)

	Returns:

	multiplicative factor, base units

	Return type:

	type [https://docs.python.org/3/library/functions.html#type]

	
get_compatible_units(input_units, group_or_system=None) → FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][Unit]

	

	
get_dimensionality(input_units) → UnitsContainerT

	Convert unit or dict of units or dimensions to a dict of base dimensions
dimensions

	
get_group(name: str [https://docs.python.org/3/library/stdtypes.html#str], create_if_needed: bool [https://docs.python.org/3/library/functions.html#bool] = True) → Group

	Return a Group.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the group to be

	create_if_needed (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, create a group if not found. If False, raise an Exception.
(Default value = True)

	Returns:

	Group

	Return type:

	type [https://docs.python.org/3/library/functions.html#type]

	
get_name(name_or_alias: str [https://docs.python.org/3/library/stdtypes.html#str], case_sensitive: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the canonical name of a unit.

	
get_root_units(input_units: UnitLike, check_nonmult: bool [https://docs.python.org/3/library/functions.html#bool] = True) → Tuple[Number, Unit]

	Convert unit or dict of units to the root units.

If any unit is non multiplicative and check_converter is True,
then None is returned as the multiplicative factor.

	Parameters:

	
	input_units (UnitsContainer or str [https://docs.python.org/3/library/stdtypes.html#str]) – units

	check_nonmult (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, None will be returned as the
multiplicative factor if a non-multiplicative
units is found in the final Units. (Default value = True)

	Returns:

	multiplicative factor, base units

	Return type:

	Number, pint.Unit

	
get_symbol(name_or_alias: str [https://docs.python.org/3/library/stdtypes.html#str], case_sensitive: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return the preferred alias for a unit.

	
get_system(name: str [https://docs.python.org/3/library/stdtypes.html#str], create_if_needed: bool [https://docs.python.org/3/library/functions.html#bool] = True) → System

	Return a Group.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the group to be

	create_if_needed (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, create a group if not found. If False, raise an Exception.
(Default value = True)

	Returns:

	System

	Return type:

	type [https://docs.python.org/3/library/functions.html#type]

	
is_compatible_with(obj1: Any [https://docs.python.org/3/library/typing.html#typing.Any], obj2: Any [https://docs.python.org/3/library/typing.html#typing.Any], *contexts: Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Context], **ctx_kwargs) → bool [https://docs.python.org/3/library/functions.html#bool]

	check if the other object is compatible

	Parameters:

	
	obj1 – The objects to check against each other. Treated as
dimensionless if not a Quantity, Unit or str.

	obj2 – The objects to check against each other. Treated as
dimensionless if not a Quantity, Unit or str.

	*contexts (str [https://docs.python.org/3/library/stdtypes.html#str] or pint.Context) – Contexts to use in the transformation.

	**ctx_kwargs – Values for the Context/s

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
load_definitions(file, is_resource: bool [https://docs.python.org/3/library/functions.html#bool] = False) → None [https://docs.python.org/3/library/constants.html#None]

	Add units and prefixes defined in a definition text file.

	Parameters:

	
	file – can be a filename or a line iterable.

	is_resource – used to indicate that the file is a resource file
and therefore should be loaded from the package. (Default value = False)

	
non_int_type

	Numerical type used for non integer values.

	
parse_expression(input_string: str [https://docs.python.org/3/library/stdtypes.html#str], case_sensitive: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, use_decimal: bool [https://docs.python.org/3/library/functions.html#bool] = False, **values) → Quantity

	Parse a mathematical expression including units and return a quantity object.

Numerical constants can be specified as keyword arguments and will take precedence
over the names defined in the registry.

	Parameters:

	
	input_string –

	case_sensitive – (Default value = None, which uses registry setting)

	use_decimal – (Default value = False)

	**values –

	
parse_pattern(input_string: str [https://docs.python.org/3/library/stdtypes.html#str], pattern: str [https://docs.python.org/3/library/stdtypes.html#str], case_sensitive: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None, use_decimal: bool [https://docs.python.org/3/library/functions.html#bool] = False, many: bool [https://docs.python.org/3/library/functions.html#bool] = False) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]], str [https://docs.python.org/3/library/stdtypes.html#str]]]

	Parse a string with a given regex pattern and returns result.

	Parameters:

	
	input_string –

	pattern_string – The regex parse string

	case_sensitive – (Default value = None, which uses registry setting)

	use_decimal – (Default value = False)

	many – Match many results
(Default value = False)

	
parse_unit_name(unit_name: str [https://docs.python.org/3/library/stdtypes.html#str], case_sensitive: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None) → Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]], ...]

	Parse a unit to identify prefix, unit name and suffix
by walking the list of prefix and suffix.
In case of equivalent combinations (e.g. (‘kilo’, ‘gram’, ‘’) and
(‘’, ‘kilogram’, ‘’), prefer those with prefix.

	Parameters:

	
	unit_name –

	case_sensitive (bool [https://docs.python.org/3/library/functions.html#bool] or None) – Control if unit lookup is case sensitive. Defaults to None, which uses the
registry’s case_sensitive setting

	Returns:

	all non-equivalent combinations of (prefix, unit name, suffix)

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of tuples (str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str])

	
parse_units(input_string: str [https://docs.python.org/3/library/stdtypes.html#str], as_delta: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None, case_sensitive: Optional[bool [https://docs.python.org/3/library/functions.html#bool]] = None) → Unit

	Parse a units expression and returns a UnitContainer with
the canonical names.

The expression can only contain products, ratios and powers of units.

	Parameters:

	
	input_string (str [https://docs.python.org/3/library/stdtypes.html#str]) –

	as_delta (bool [https://docs.python.org/3/library/functions.html#bool] or None) – if the expression has multiple units, the parser will
interpret non multiplicative units as their delta_ counterparts. (Default value = None)

	case_sensitive (bool [https://docs.python.org/3/library/functions.html#bool] or None) – Control if unit parsing is case sensitive. Defaults to None, which uses the
registry’s setting.

	Return type:

	pint.Unit

	
pi_theorem(quantities)

	Builds dimensionless quantities using the Buckingham π theorem

	Parameters:

	quantities (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – mapping between variable name and units

	Returns:

	a list of dimensionless quantities expressed as dicts

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
remove_context(name_or_alias: str [https://docs.python.org/3/library/stdtypes.html#str]) → Context

	Remove a context from the registry and return it.

Notice that this methods will not disable the context;
see disable_contexts().

	
set_fmt_locale(loc: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) → None [https://docs.python.org/3/library/constants.html#None]

	Change the locale used by default by format_babel.

	Parameters:

	loc (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – None` (do not translate), ‘sys’ (detect the system locale) or a locale id string.

	
setup_matplotlib(enable: bool [https://docs.python.org/3/library/functions.html#bool] = True) → None [https://docs.python.org/3/library/constants.html#None]

	Set up handlers for matplotlib’s unit support.

	Parameters:

	enable (bool [https://docs.python.org/3/library/functions.html#bool]) – whether support should be enabled or disabled (Default value = True)

	
split_gas_mixture(quantity: Quantity) → list [https://docs.python.org/3/library/stdtypes.html#list]

	Split a gas mixture into constituent gases.

Given a pint quantity with the units containing a gas mixture,
returns a list of the constituents as pint quantities.

	
property sys

	

	
with_context(name, **kwargs) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[F], F]

	Decorator to wrap a function call in a Pint context.

Use it to ensure that a certain context is active when
calling a function:

:param name: name of the context.
:param **kwargs: keyword arguments for the context

	Returns:

	the wrapped function.

	Return type:

	callable

Example

>>> @ureg.with_context('sp')
... def my_cool_fun(wavelength):
... print('This wavelength is equivalent to: %s', wavelength.to('terahertz'))

	
wraps(ret: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Unit, Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Unit]]], args: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Unit, Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Unit]]], strict: bool [https://docs.python.org/3/library/functions.html#bool] = True) → Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], T]], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], Quantity[T]]]

	Wraps a function to become pint-aware.

Use it when a function requires a numerical value but in some specific
units. The wrapper function will take a pint quantity, convert to the units
specified in args and then call the wrapped function with the resulting
magnitude.

The value returned by the wrapped function will be converted to the units
specified in ret.

	Parameters:

	
	ureg (pint.UnitRegistry) – a UnitRegistry instance.

	ret (str [https://docs.python.org/3/library/stdtypes.html#str], pint.Unit, iterable of str [https://docs.python.org/3/library/stdtypes.html#str], or iterable of pint.Unit) – Units of each of the return values. Use None to skip argument conversion.

	args (str [https://docs.python.org/3/library/stdtypes.html#str], pint.Unit, iterable of str [https://docs.python.org/3/library/stdtypes.html#str], or iterable of pint.Unit) – Units of each of the input arguments. Use None to skip argument conversion.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates that only quantities are accepted. (Default value = True)

	Returns:

	the wrapper function.

	Return type:

	callable

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the number of given arguments does not match the number of function parameters.
 if the any of the provided arguments is not a unit a string or Quantity

	
openscm_units._unit_registry.unit_registry = <openscm_units._unit_registry.ScmUnitRegistry object>

	Standard unit registry

The unit registry contains all of the recognised units. Be careful, if you
edit this registry in one place then it will also be edited in any other
places that use openscm_units. If you want multiple, separate registries,
create multiple instances of ScmUnitRegistry.

 Data API

Data API

Data used within OpenSCM Units

For example, metric conversions and breakdownss of mixture substances into
their constituents.

Mixtures API

	
openscm_units.data.mixtures.MIXTURES

	Gas mixtures supported by OpenSCM Units

Last update: 2020-12-16

Each key is the mixture’s name. Each value is itself a dictionary where each
key is the name of a component of the mixture and the value is a list in which
the first element is the standard composition, the second element is the positive
composition tolerance and the third element is the negative composition tolerance.
All values are given in mass percentage.

Sources:

	ANSI/ASHRAE Standard 34-2019, p. 9ff, ISSN 1041-2336, https://www.techstreet.com/ashrae/standards/ashrae-15-2019-packaged-w-34-2019?product_id=2046531

	https://en.wikipedia.org/wiki/List_of_refrigerants (for common names)

	Type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

 Changelog

Changelog

v0.5.1

	(#33 [https://github.com/openscm/openscm-units/pull/33]) Generate static usage documentation from the introduction notebook

	(#34 [https://github.com/openscm/openscm-units/pull/34]) Update documentation regarding NOx conversions.

	(#38 [https://github.com/openscm/openscm-units/pull/38]) Fixed Series.iteritems() removal in pandas, see e.g. #150 in primap2 [https://github.com/pik-primap/primap2/issues/150]

v0.5.0

	(#30 [https://github.com/openscm/openscm-units/pull/30]) Custom metrics are now to be provided as pd.DataFrame rather than being read off disk

	(#29 [https://github.com/openscm/openscm-units/pull/29]) Load Global Warming Potentials from globalwarmingpotentials [https://github.com/openclimatedata/globalwarmingpotentials] package.

v0.4.0

	(#28 [https://github.com/openscm/openscm-units/pull/28]) Add ability to use a custom metrics csv with ScmUnitRegistry

	(#28 [https://github.com/openscm/openscm-units/pull/28]) Drop Python3.6 support

	(#27 [https://github.com/openscm/openscm-units/pull/27]) Add github action to automatically draft a github release from a git tag.

v0.3.0

	(#25 [https://github.com/openscm/openscm-units/pull/25]) Add “N2O_conversions” context to remove ambiguity in N2O conversions

	(#23 [https://github.com/openscm/openscm-units/pull/23]) Add AR5 GWPs with climate-carbon cycle feedbacks (closes #22 [https://github.com/openscm/openscm-units/issues/22])

	(#20 [https://github.com/openscm/openscm-units/pull/20]) Make openscm_units.data a module by adding an __init__.py file to it and add docs for openscm_units.data (closes #19 [https://github.com/openscm/openscm-units/issues/19])

	(#18 [https://github.com/openscm/openscm-units/pull/18]) Made NH3 a separate dimension to avoid accidental conversion to CO2 in GWP contexts. Also added an nh3_conversions context to convert to nitrogen (closes #12 [https://github.com/openscm/openscm-units/issues/12])

	(#16 [https://github.com/openscm/openscm-units/pull/16]) Added refrigerant mixtures as units, including automatic GWP calculation from the GWP of their constituents. Also added the unit_registry.split_gas_mixtures function which can be used to split quantities containing a gas mixture into their constituents (closes #10 [https://github.com/openscm/openscm-units/issues/10])

v0.2.0

	(#15 [https://github.com/openscm/openscm-units/pull/15]) Update CI so that it runs on pull requests from forks too

	(#14 [https://github.com/openscm/openscm-units/pull/14]) Renamed openscm_units.unit_registry module to openscm_units._unit_registry to avoid name collision and lift ScmUnitRegistry to openscm_units.ScmUnitRegistry (closes #13 [https://github.com/openscm/openscm-units/issues/13])

v0.1.4

	(#7 [https://github.com/openscm/openscm-units/pull/7]) Added C7F16, C8F18 and SO2F2 AR5GWP100 (closes #8 [https://github.com/openscm/openscm-units/issues/8])

v0.1.3

	(#7 [https://github.com/openscm/openscm-units/pull/7]) Include metric conversions data in package

	(#6 [https://github.com/openscm/openscm-units/pull/6]) Add conda install instructions

v0.1.2

	(#5 [https://github.com/openscm/openscm-units/pull/5]) Update MANIFEST.in to ensure LICENSE, README.rst and CHANGELOG.rst are included in source distributions

	(#4 [https://github.com/openscm/openscm-units/pull/4]) Update README and url to point to openscm organisation

v0.1.1

	(#2 [https://github.com/openscm/openscm-units/pull/2]) Hotfix so that ‘Tt’ is terra tonne rather than ‘tex’

v0.1.0

	(#1 [https://github.com/openscm/openscm-units/pull/1]) Setup repository

 Python Module Index

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 openscm_units	

 	
 	
 openscm_units._unit_registry	

 	
 	
 openscm_units.data	

 Index

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | W

A

 	
 	add_context() (openscm_units._unit_registry.ScmUnitRegistry method)

 	
 	add_standards() (openscm_units._unit_registry.ScmUnitRegistry method)

 	auto_reduce_dimensions (openscm_units._unit_registry.ScmUnitRegistry attribute)

C

 	
 	case_sensitive (openscm_units._unit_registry.ScmUnitRegistry attribute)

 	check() (openscm_units._unit_registry.ScmUnitRegistry method)

 	
 	context() (openscm_units._unit_registry.ScmUnitRegistry method)

 	convert() (openscm_units._unit_registry.ScmUnitRegistry method)

D

 	
 	default_as_delta (openscm_units._unit_registry.ScmUnitRegistry attribute)

 	default_format (openscm_units._unit_registry.ScmUnitRegistry property)

 	
 	default_system (openscm_units._unit_registry.ScmUnitRegistry property)

 	define() (openscm_units._unit_registry.ScmUnitRegistry method)

 	disable_contexts() (openscm_units._unit_registry.ScmUnitRegistry method)

E

 	
 	enable_contexts() (openscm_units._unit_registry.ScmUnitRegistry method)

F

 	
 	fmt_locale (openscm_units._unit_registry.ScmUnitRegistry attribute)

G

 	
 	get_base_units() (openscm_units._unit_registry.ScmUnitRegistry method)

 	get_compatible_units() (openscm_units._unit_registry.ScmUnitRegistry method)

 	get_dimensionality() (openscm_units._unit_registry.ScmUnitRegistry method)

 	get_group() (openscm_units._unit_registry.ScmUnitRegistry method)

 	
 	get_name() (openscm_units._unit_registry.ScmUnitRegistry method)

 	get_root_units() (openscm_units._unit_registry.ScmUnitRegistry method)

 	get_symbol() (openscm_units._unit_registry.ScmUnitRegistry method)

 	get_system() (openscm_units._unit_registry.ScmUnitRegistry method)

I

 	
 	is_compatible_with() (openscm_units._unit_registry.ScmUnitRegistry method)

L

 	
 	load_definitions() (openscm_units._unit_registry.ScmUnitRegistry method)

M

 	
 	MIXTURES (in module openscm_units.data.mixtures)

 	
 module

 	openscm_units._unit_registry

 	openscm_units.data

N

 	
 	non_int_type (openscm_units._unit_registry.ScmUnitRegistry attribute)

O

 	
 	
 openscm_units._unit_registry

 	module

 	
 	
 openscm_units.data

 	module

P

 	
 	parse_expression() (openscm_units._unit_registry.ScmUnitRegistry method)

 	parse_pattern() (openscm_units._unit_registry.ScmUnitRegistry method)

 	
 	parse_unit_name() (openscm_units._unit_registry.ScmUnitRegistry method)

 	parse_units() (openscm_units._unit_registry.ScmUnitRegistry method)

 	pi_theorem() (openscm_units._unit_registry.ScmUnitRegistry method)

R

 	
 	remove_context() (openscm_units._unit_registry.ScmUnitRegistry method)

S

 	
 	ScmUnitRegistry (class in openscm_units._unit_registry)

 	set_fmt_locale() (openscm_units._unit_registry.ScmUnitRegistry method)

 	
 	setup_matplotlib() (openscm_units._unit_registry.ScmUnitRegistry method)

 	split_gas_mixture() (openscm_units._unit_registry.ScmUnitRegistry method)

 	sys (openscm_units._unit_registry.ScmUnitRegistry property)

U

 	
 	unit_registry (in module openscm_units._unit_registry)

 	
 	UnitsContainer() (openscm_units._unit_registry.ScmUnitRegistry method)

W

 	
 	with_context() (openscm_units._unit_registry.ScmUnitRegistry method)

 	
 	wraps() (openscm_units._unit_registry.ScmUnitRegistry method)

nav.xhtml

 Table of Contents

 		
 OpenSCM-Units

 		
 Installation

 		
 Usage

 		
 Introduction

 		
 The unit registry

 		
 Basics

 		
 Contexts

 		
 Gas mixtures

 		
 Building up complexity

 		
 Custom conversions

 		
 Custom conversions DataFrame

 		
 Development

 		
 Contributing

 		
 Getting setup

 		
 Getting help

 		
 Formatting

 		
 Buiding the docs

 		
 Gotchas

 		
 Docstring style

 		
 Releasing

 		
 First step

 		
 PyPI

 		
 Push to repository

 		
 Why is there a Makefile in a pure Python repository?

 		
 Unit Registry API

 		
 ScmUnitRegistry

 		
 ScmUnitRegistry.UnitsContainer()

 		
 ScmUnitRegistry.add_context()

 		
 ScmUnitRegistry.add_standards()

 		
 ScmUnitRegistry.auto_reduce_dimensions

 		
 ScmUnitRegistry.case_sensitive

 		
 ScmUnitRegistry.check()

 		
 ScmUnitRegistry.context()

 		
 ScmUnitRegistry.convert()

 		
 ScmUnitRegistry.default_as_delta

 		
 ScmUnitRegistry.default_format

 		
 ScmUnitRegistry.default_system

 		
 ScmUnitRegistry.define()

 		
 ScmUnitRegistry.disable_contexts()

 		
 ScmUnitRegistry.enable_contexts()

 		
 ScmUnitRegistry.fmt_locale

 		
 ScmUnitRegistry.get_base_units()

 		
 ScmUnitRegistry.get_compatible_units()

 		
 ScmUnitRegistry.get_dimensionality()

 		
 ScmUnitRegistry.get_group()

 		
 ScmUnitRegistry.get_name()

 		
 ScmUnitRegistry.get_root_units()

 		
 ScmUnitRegistry.get_symbol()

 		
 ScmUnitRegistry.get_system()

 		
 ScmUnitRegistry.is_compatible_with()

 		
 ScmUnitRegistry.load_definitions()

 		
 ScmUnitRegistry.non_int_type

 		
 ScmUnitRegistry.parse_expression()

 		
 ScmUnitRegistry.parse_pattern()

 		
 ScmUnitRegistry.parse_unit_name()

 		
 ScmUnitRegistry.parse_units()

 		
 ScmUnitRegistry.pi_theorem()

 		
 ScmUnitRegistry.remove_context()

 		
 ScmUnitRegistry.set_fmt_locale()

 		
 ScmUnitRegistry.setup_matplotlib()

 		
 ScmUnitRegistry.split_gas_mixture()

 		
 ScmUnitRegistry.sys

 		
 ScmUnitRegistry.with_context()

 		
 ScmUnitRegistry.wraps()

 		
 unit_registry

 		
 Data API

 		
 Mixtures API

 		
 MIXTURES

 		
 Changelog

 		
 v0.5.1

 		
 v0.5.0

 		
 v0.4.0

 		
 v0.3.0

 		
 v0.2.0

 		
 v0.1.4

 		
 v0.1.3

 		
 v0.1.2

 		
 v0.1.1

 		
 v0.1.0

_static/file.png

_static/minus.png

_static/plus.png

_images/notebooks_introduction_16_1.png
